If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+15x=58
We move all terms to the left:
x^2+15x-(58)=0
a = 1; b = 15; c = -58;
Δ = b2-4ac
Δ = 152-4·1·(-58)
Δ = 457
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{457}}{2*1}=\frac{-15-\sqrt{457}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{457}}{2*1}=\frac{-15+\sqrt{457}}{2} $
| (2x-3)(2x+2)=4x^2 | | x-x=-18 | | 2=1*1,10^x | | 2x=10=-4 | | 72/2p=3p | | (4x+2)*(2x+3)=30 | | x÷2-4=5 | | s/4.5=6.2 | | s/4.5=6.2 | | s/4.5=6.2 | | 50x-3=-100 | | n^2-15^2=216 | | 5(x÷8)=17x÷4 | | 5(x÷8)=17x÷4 | | 2p2-11p=0 | | 5d+16=9 | | 130=n-12 | | -17=n+6 | | 2(2x-1,2)=1,6 | | 2(2x-1,2)=1,6 | | 2(2x-1,2)=1,6 | | 2(2x-1,2)=1,6 | | x^2+10=x*7 | | x^2+10=x*7 | | x^2+10=x*7 | | x^2+10=x*7 | | x^2+10=x*7 | | 3(-3x+4,3)=3,9 | | 4w+12w+9=4w+14w+12 | | 4w+12w+9=4w+14w+12 | | 4w+12w+9=4w+14w+12 | | 8x+9=7x+11 |